$\begin{array}{lll} C_2\text{-}C_6\text{alkynylene}, & \text{wherein} & \text{the} & C_1\text{-}C_6\text{alkyl}, \\ C_2\text{-}C_6\text{alkenylene} & \text{and} & C_2\text{-}C_6\text{alkynylene} & \text{of} & L & \text{are each} \\ \text{optionally substituted with 1 to 4 substituents independently selected from halogen,} & --\text{R}^8, & --\text{OR}^8, & --\text{N}(\text{R}^9)_2, \\ & --\text{P}(\text{O})(\text{OR}^8)_2, & --\text{OP}(\text{O})(\text{OR}^8)_2, & --\text{P}(\text{O})(\text{OR}^{10})_2, \\ & --\text{OP}(\text{O})(\text{OR}^{10})_2; \end{array}$

 R^7 is selected from H, C_1 - C_6 alkyl, aryl, heteroaryl, C_3 - C_8 cycloalkyl, C_1 - C_6 heteroalkyl, C_1 - C_6 haloalkyl, C₂-C₈alkene, C₂-C₈alkyne, C_1 - C_6 alkoxy, C₁-C₆haloalkoxy, and C₃-C₈heterocycloalkyl, wherein the C₁-C₆alkyl, aryl, heteroaryl, C₃-C₈cycloalkyl, C_1 - C_6 heteroalkyl, C_1 - C_6 haloalkyl, C_2 - C_8 alkene, C_1 - C_6 alkyne, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, and C_3 - C_8 heterocycloalkyl groups of \mathbb{R}^7 are each optionally substituted with 1 to 3 R¹³ groups, and each R¹³ is independently selected from halogen, -CN, -LR9, -LOR9, Pendentry selected from harogen, —CN, -LR, -LOR, -OLR⁹, -LR¹⁰, -LOR¹⁰, —OLR¹⁰, -LR⁸, -LOR⁸, —OLR⁸, -LSR¹⁰, -LC(O)R⁸, —OLC(O)R⁸, -LC(O)R⁸, -LC(O)R⁹, -LC(O)R⁹R¹¹, -LC(O)R⁹R⁸, -LN(R⁹)₂, -LNR⁹R⁸, -LNR⁹R¹⁰, -LC(O)N(R⁹)₂, -LS(O)R⁸, -LC(O)NR⁸OH, -LNR⁹C(O)R⁸, -LC(O)R⁸, -LC(O)R⁸, -LC(O)R⁹ -LNR⁹C(O)R⁸, -LNR⁹C(O)OR⁸, $-LS(O)_2N(R^9)_2$ $-OLS(O)_2N(R^9)_2$, $-LNR^9S(O)_2R^8$, $-LC(O)NR^9LN$ $(R^9)_2$, $-LP(O)(OR^8)_2$, $-LOP(0)(OR^8)_2$, $-LP(O)(OR^{10})_2$ and \longrightarrow OLP(O)(OR¹⁰)₂;

each R⁸ is independently selected from H, —CH(R¹⁰)₂, C₂-C₈alkyne, C₁-C₈alkyl, C₂-C₈alkene, C₁-C₆haloalkyl, C_1 - C_6 alkoxy, C₁-C₆heteroalkyl, C2-C8heterocycloalkyl, C₃-C₈cycloalkyl, C₁-C₆hydroxyalkyl and C₁-C₆haloalkoxy, wherein the C_1 - C_8 alkyl, C₂-C₈alkene, C₂-C₈alkyne, $\mathrm{C}_1\text{-}\mathrm{C}_6$ haloalkyl, C₁-C₆heteroalkyl, C₁-C₆alkoxy, C₃-C₈cycloalkyl, C2-C8heterocycloalkyl, C₁-C₆hydroxyalkyl and C₁-C₆haloalkoxy groups of R⁸ are each optionally substituted with 1 to 3 substituents independently selected from —CN, R¹¹, —OR¹¹, $NR^{11}OH$, $-S(O)_2R^{11}$, $-S(O)R^{11}$, $-S(O)_2NR^{11}R^{12}$ $-NR^{11}S(O)_2R^{11}$, $-P(O)(OR^{11})_2$, and $-OP(O)(OR^{11})_3$

each R9 is independently selected from H, -C(O)R8 $-C(O)OR^8$, $-C(O)R^{10}$, $-C(O)OR^{10}$, $-S(O)_2R^{10}$, $-C_1$ - C_6 alkyl, C_1 - C_6 heteroalkyl and C_3 - C_6 cycloalkyl, or each R⁹ is independently a C₁-C₆alkyl that together N they are attached C₃-C₈heterocycloalkyl, wherein the C₃-C₈heterocycloalkyl ring optionally contains an additional heteroatom selected from N, O and S, and wherein the C₁-C₆ alkyl, C₁-C₆ heteroalkyl, C₃-C₆ cycloalkyl, or C₃-C₈heterocycloalkyl groups of R⁹ are each optionally substituted with 1 to 3 substituents independently selected from —CN, R¹¹, —OR¹¹, —SR¹¹, —C(O)R¹¹, $-OC(O)R^{11}$, $-C(O)OR^{11}$, $-NR^{11}R^{12}$, -C(O) $NR^{11}R^{12}$, $-C(O)NR^{11}OH$, $-S(O)_2R^{11}$, $-S(O)R^{11}$, $-S(O)_2NR^{11}R^{12}$, $-NR^{11}S(O)_2R^{11}$, $-P(O)(OR^{11})_2$, and $-\bar{O}P(O)(OR^{11})_2$;

each R^{10} is independently selected from aryl, C_3 - C_8 cycloalkyl, C_3 - C_8 heterocycloalkyl and heteroaryl, wherein the aryl, C_3 - C_8 cycloalkyl, C_3 - C_8 heterocycloalkyl and heteroaryl groups are optionally substituted with 1 to 3 substituents selected

 $\begin{array}{lll} \text{from halogen,} & -R^8, -OR^8, -LR^9, -LOR^9, -N(R^9)_2, \\ & -NR^9C(O)R^8, & -NR^9CO_2R^8, & -CO_2R^8, & -C(O)R^8 \\ \text{and} & -C(O)N(R^9)_2; \end{array}$

 R^{11} and R^{12} are independently selected from H, $C_1\text{-}C_6\text{alkyl},\ C_1\text{-}C_6\text{heteroalkyl},\ C_1\text{-}C_6\text{haloalkyl},\ \text{aryl},\ \text{heteroaryl},\ C_3\text{-}C_8\text{cycloalkyl},\ \text{and}\ C_3\text{-}C_8\text{heterocycloalkyl},\ \text{wherein}\ \text{the}\ C_1\text{-}C_6\text{alkyl},\ C_1\text{-}C_6\text{heteroalkyl},\ C_1\text{-}C_6\text{haloalkyl},\ \text{aryl},\ \text{heteroaryl},\ C_3\text{-}C_8\text{cycloalkyl},\ \text{and}\ C_3\text{-}C_8\text{heterocycloalkyl}\ \text{groups}\ \text{of}\ R^{11}\ \text{and}\ R^{12}\ \text{are}\ \text{each}\ \text{optionally}\ \text{substituted}\ \text{with}\ 1\ \text{to}\ 3\ \text{substituents}\ \text{independently}\ \text{selected}\ \text{from}\ \text{halogen},\ -\text{CN},\ R^8,\ -\text{OR}^8,\ -\text{C}(\text{O})\text{R}^8,\ -\text{OC}(\text{O})\text{R}^8,\ -\text{C}(\text{O})\text{OR}^8,\ -\text{C}(\text{O})\text{OR}^8,\ -\text{C}(\text{O})\text{OR}^8,\ -\text{C}(\text{O})\text{N}\ (R^9)_2,\ -\text{NR}^8\text{C}(\text{O})\text{R}^8,\ -\text{S}(\text{O})_2\text{R}^8,\ -\text{S}(\text{O})_2\text{N}\ (R^9)_2,\ -\text{NR}^9\text{S}(\text{O})_2\text{R}^8,\ C_1\text{-}C_6\text{haloalkyl}\ \text{and}\ C_1\text{-}C_6\text{haloalkoxy};$

or R¹¹ and R¹² are each independently C₁-C₆alkyl and taken together with the N atom to which they are attached form an optionally substituted C₃-C₈heterocycloalkyl ring optionally containing an additional heteroatom selected from N. O and S:

each R^4 is independently selected from halogen, $-R^8$, $-R^7$, $-OR^8$, $-OR^8$, $-R^{10}$, $-OR^{10}$, $-SR^8$, $-NO_2$, -CN, $-N(R^9)_2$, $-NR^9C(O)R^8$, $-NR^9C(S)R^8$, $-NR^9C(O)N(R^9)_2$, $-NR^9C(S)N(R^9)_2$, $-NR^9CO_2R^8$, $-NR^9NR^9C(O)R^8$, $-NR^9NR^9C(O)N(R^9)_2$, $-NR^9NR^9CO_2R^8$, $-C(O)C(O)R^8$, $-C(O)CH_2C(O)R^8$, $-CO_2R^8$, $-(CH_2)_nCO_2R^8$, $-C(O)R^8$, $-C(S)R^8$, $-C(O)N(R^9)_2$, $-C(S)N(R^9)_2$, $-OC(O)N(R^9)_2$, $-OC(O)R^8$, $-C(O)R^8$, -C

—(CH₂)_nNHC(O)R⁸; or two adjacent R^A substituents form a 5-6 membered ring that contains up to two heteroatoms as ring members;

n is, independently at each occurrence, 0, 1, 2, 3, 4, 5, 6, 7 or 8;

each m is independently selected from 1, 2, 3, 4, 5 and 6, and

t is 1, 2, 3, 4, 5, 6, 7 or 8.

7. (canceled)

8. The method of claim **6**, wherein the benzonapthyridine TLR7 agonist is 2-(4-methoxy-2-methylphenethyl)-8-methylbenzo[f][1,7]naphthyridin-5-amine having the structure of

9. The method of claim 6, wherein the benzonapthyridine TLR7 agonist is 2-(4-(2-(5-amino-8-methylbenzo[f][1,7] naphthyridin-2-yl)ethyl)-3-methylphenyl)propan-2-ol having the structure of